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The well-known parabolic Heat Transfer Equation is a simplest recognized description
of phenomena related to the heat conductivity in solids with microstructure. However,
it is a tool difficult to use due to the discontinuity of coefficients appearing here. The
purpose of the paper is to reformulate this equation to the form that allows to represent
solutions in the form of Fourier’s expansions. This equivalent re-formulation has the form
of infinite number of equations with Fourier coefficients in expansion of the temperature
field as the basic unknowns. The first term in Fourier representation, being an average
temperature field, should satisfy the well-known parabolic heat conduction equation with
Fourier coefficients as fields controlling average temperature behavior. The proposed de-
scription takes into account changes of the composite periodicity accompanying changes
in the variable perpendicular to the surfaces separating components, concerning FGM -
type materials and can be treated as the asymptotic version of Heat Transfer Equation
obtained as a result of a certain limit passage where the cell size remains unchanged.

Keywords: temperature fluctuations, homogenization, tolerance modelling.

1. Introduction

The starting point for the implementation of the proposed method of modeling
is the modeling method known as the Tolerance Averaging Technique (TAT ). It
was proposed by Professor Czes law Woźniak. The reader is referred to the six
basic monograph on this subject [1-6]. In this paper instead of Woźniak’s Micro-
Macro Hypothesis (used in tolerance modeling) the more general hypothesis has
been applied. It introduce possibility of developing a Fourier series for residuals
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between the exact temperature and its micro-macro hypothetical approximation.
Hence, in the proposed course of modeling the temperature field is represented
as a sum of two parts. The first part, referred to as the long-wave part of the
temperature field, coincides with the temperature mentioned in the tolerance micro-
macro hypothesis. The second part is the short-wave part of the temperature field
represented by the oscillating terms of the properly selected Fourier expansion.

The starting point of considerations is the well-known parabolic heat transfer equa-
tion:

∇T (K∇θ) − cθ̇ = b (1)

in which the region Ω ⊂ RD, 2 ≤ D ≤ 3, occupied by the composite is restricted to:

Ω = Ωσ × ΩD−σ (2)

where:

1o Ωσ = (0, L), ΩD−σ = (0, δ1) × (0, δ2) while (σ,D) = (1, 3),

2o Ωσ = (0, L1) × (0, L2), ΩD−σ = (0, δ) while (σ,D) = (2, 3),

3o Ωσ = (0, L), ΩD−σ = (0, δ) while (σ,D) = (1, 2)

for L1, L2, L, δ1, δ2, δ > 0. In (1) θ = θ(y, z, t), y ∈ Ωσ ⊂ Rσ, z ∈ ΩD−σ ⊂ RD−σ,
t ≥ 0, denotes the temperature field, c is a specific heat field and k is the heat con-
ductivity constant. Moreover, ∇ ≡ ∇σ +∇D−σ for ∇σ ≡ [∂/∂y1, ..., ∂/∂yσ, 0, .., 0]T

with zeros placed in D − σ positions and ∇D−σ ≡ [0, ..., 0, ∂/∂z1, ..., ∂/∂zD−σ]T

with zeros placed in σ positions. Fields c = c(·) and k = k(·) takeS values denoted
by c1, . . . , cS and k1, . . . , kS , respectively, and do not depend on the tempera-
ture field θ and are restrictions to Ωσ of a certain periodic fields defined in Rσ.
The paper is restricted to the microstructural ∆-periodic composites which diame-
ter λ = diam(∆) not necessary small where compared to the characteristic length
dimension of the region Ω. It means that there exists σ-tuple (v1, ...,vσ) of inde-
pendent vectors (v1, ...,vσ) from Rσ, determining m directions of periodicity and
referred to as periodicity vectors, such that region:∪

{∆k1,...kσ, rσ+1,...,r3 : k1, ...kσ = ...− 1, 0, 1, ...., rσ+1, ..., r3 ∈ R} = R3 (3)

for ∆k1,...kσ, rσ+1,...,r3 ≡ k1v
1 + ...+ kσv

σ + rσ+1e
σ+1 + ....+ r3e

3 + ∆ and such that
both fields c = c(·) and K = K(·) are ∆- periodic. Here ei denotes i-th unit vector
from R3, i = 1, 2, 3. In the subsequent investigations an important role plays the
averaging ⟨f⟩(x), z = z(z, y), of an arbitrary integrable fieldfdefined on Rσdefined
as region:

⟨f⟩(x) =
1

|∆|

∫
∆

f(ξ)dξ (4)

and which is a constant field provided that f is a ∆-periodic field.

2. Modelling procedure

The investigations is based on the two fundamental assumptions. The first mod-
eling assumption is a certain extension of the micro-macro hypothesis introduced
framework of the tolerance averaging technique, cf. [1-6]. In accordance with that
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hypothesis, the temperature field θ can be approximated with an acceptable accu-
racy with form:

θM (z) = ϑ(z) + hA(x)ψA(z) (5)

In which the slowly varying fields ϑ(·) and ψA(·) are tolerance averaging of temper-
ature field and amplitude fluctuations fields, respectively. Here and in the sequel
the summation convention holds with respect to indices . A = 1, ..., N Symbols hA,
A = 1, ..., N , denote in (5) tolerance shape functions which should be periodic and
satisfy conditions:

hA ∈ o(λ), λ∇yh
A ∈ o(λ), ⟨chA⟩ = 0 (6)

For particulars the reader is referred to [1-6]. We suggests to interpret in (5)
θlong = ϑ and θshort = hA(x)ψA(z). The tolerance-micro macro hypothesis can
be formulated in the form:

Tolerance micro-macro hypothesis. The residual part of the temperature field
θres being the difference between the temperature field θ and its tolerance parts
θM given by (5) can be treated as zero, θres ≡ θ − θM ≈ 0, i.e. it vanish with an
acceptable “tolerance approximation”.

In contrast to the tolerance modeling in this paper instead of quoted above micro
- macro hypothesis the extended micro - macro hypothesis will be applied. According
to this new hypothesis the right side of (6) is not equal to zero but is a special
infinite analytic expansion. As for the attempt to adapt the idea implemented in the
application of the theory of signals, where we have to deal with the ”overlapping”
of many signals determining by different parameters. In order to formulate this
hypothesis denote by ∆1,∆2, ...,∆nthe homogeneity subregions of the basic cell ∆
and let Γ1 = ∂∆1,..., Γn = ∂∆n, Γ∆ = Γ1 ∪ ... ∪ Γn. Now, the extended micro -
macro hypothesis can be formulated as follow:

Assumption 1. (Extended micro-macro hypothesis)
The smoothed part θreg ≡ θ − θres of the temperature field θ being the difference
between temperature field θand its residual part θres given by (5) produces dis-
appearing heat flux vector qreg ≡ k∇θreg = 0 in regular points of the composite
discontinuity surfaces.

In the subsequent considerations it will be assumed that summation convention
holds also with respect to p = 1, 2, .... That is why, under the second modeling
assumption, formula (6) can be rewritten in the form:

θ(y, z, t) − θres(y, z, t) = a0(z, t) + ap(z, t)ϕp(y, z) (7)

In according to the second modeling assumption shape functions as well as the
orthogonal system ϕp(x) are independent on the thermal and geometrical properties
of the conductor.
Remark 1. Hence, short-wave part θreg ≡ θ − θres of the temperature field can be
represented by Fourier expansion:

θreg(x, y, t) = a0(z, t) + ϕpap(z, t) (8)

formed by an orthogonal ∆ - periodic basis ϕp(x), p = 1, 2, .... If orthogonality is

here related to the scalar product f1 ◦f2 = ⟨f1f2⟩ =
∑S

s=1 ηs⟨f1f2⟩s, determined by
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the averaged values ⟨f1f2⟩s taken over homogeneous parts ∆s of the repetitive cell
∆ ⊂ Rσ, then Fourier basis can be treated as independent on the material structure
of the composite.
Remark 2. The residual temperature field θres can be represented in the tolerance
form θres = ⟨θres⟩+hAψA for a certain oscillating shape functions hA = hA(y, z, t),
⟨hA⟩ = 0, and amplitudes ψA = ψA(y, t). Hence θres can be treated as a micro-
macro part (given by (5) and (6)) of the temperature field θ. That is why expansion:

θ = ϑ+ λ[gAψA + ap(z, t)φp(y, z)] (9)

is a certain temperature representation formed for:

ϑ = a0 + ⟨θres⟩ (10)

and for hA(x, t) ≡ λgA(λ−1x) and ϕp(x, t) ≡ λφp(λ−1x) together with the condi-
tions

⟨cφp⟩ = 0, ⟨Kφp⟩ = 0, p = 1, 2, ... ,
⟨ch⟩ = 0, ⟨Kh⟩ = 0.

(11)

formulated under Remark 1.
Remark 3. Assumption 1. ensures fulfillment the well-known continuity condi-
tion imposed on the heat flux component (q)n ≡ nTK∇θ in the normal direc-
tion to the composite discontinuity surfaces Γ (determined by continuous unit
vector field n = n(·) normal to these surfaces) provided that residual heat flux
(qres)n ≡ nTK∇(θres) is also continuous.

Now we are to formulate third modeling assumption crucial for formulation of
the final reformulation of parabolic heat transfer equation. It is and additional
assumption which provides the ability to perform tolerance modeling procedure
with respect to the fields u = ⟨ϑ⟩ as the average temperature field, and to the fields
ψ(·)and ap(·) as fluctuation amplitudes, respectively.

Assumption 2. (The locality of the long-wave part of the temperature field)
The temperature field in the ε- neighborhood of the surface separating the compo-
nents. Smoothing operation leading from θ to θreg can be realized under additional
condition θres ̸= 0 if x ∈ Γε, and hence g = gε → 0 and ϑ = ϑε → u while ε→ 0.

Under Assumption 3. we can treat condition ϑ = ϑε → u as a special definition
of the average temperature field.

3. Governing equations

Assumptions 1, 2, 3, yield the conclusion that if temperature field is represented by
(7) then limit passage with ε → 0 leads from the heat transfer equation to model
equations:

⟨cu̇⟩ − ∇T [⟨k⟩∇u− ⟨k∇Tφp⟩ap − ⟨k∇gA⟩ψA] = −⟨b⟩
⟨∇T gAk∇gB⟩ψB + ⟨k∇T gA⟩∇u = 0
λ2{⟨φpcφq⟩ȧq −∇T

z ⟨φpcφq⟩∇zaq} + λ(⟨∇T
y φ

pkφq⟩ − ⟨∇Tφqkφp⟩)∇zaq+
+⟨∇T

y φ
pk∇φq⟩aq + ⟨∇T

y φ
pk∇gA⟩ψ + ⟨k∇T

y φ
p⟩∇u = λ⟨ϕpb⟩

(12)

which will be referred to as The Extended Tolerance Model of Heat Conduction in
Periodic Composites . In (12) tolerance shape functions gA as well as all coefficients
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including these shape functions are treated as limit passages with ε → 0 of gAε
and of the related averaged coefficients including tolerance shape functions gAε ,
respectively. In fact equations (14) are related to the case in which periodic structure
of the composite depends on z-variable i. e.. In this case of periodicity we use
the name FGM ?type composite materials to emphasize the importance of physical
phenomena that become important when the periodic structure of the composite
changes with the change of zvariable. Equations (14) will be referred to as The
Extended Tolerance Model of Heat Conduction in FGM ?type Periodic Composites.

It should be emphasized that including the dependence of the composite period-
icity on the z-variable averaged coefficients in Equations(12) become dependent on
full gradients ∇ of the shape function in places before the right-hand bracket seg-
ment ⟩denoting the averaging over the repetitive cell ∆ instead of the dependence
on partial gradients ∇y with respect to the periodic variable y in the same places,
when we restrict ourselves to the saturation η that does not change along with the
both variables y and z. That is why matrix coefficient λ(⟨∇T

y φ
pkφq⟩−⟨∇Tφqkφp⟩)

in the damping term λ(⟨∇T
y φ

pkφq⟩ − ⟨∇Tφqkφp⟩)∇zaq can be decomposed on the
sum onto not-vanishing symmetric and skew-symmetric terms. Situations in which
FGM ?periodicity reduces to the usual periodicity the symmetric term in this de-
composition vanish. In the asymptotic homogenization approach, cf. [1,2], the
dependence the composite periodicity on the ”z” variable is possible to consider
by the including to the original homogenized equations the special correctors that
allow the fulfillment of appropriate boundary conditions impossible to fulfillment
during their absence.

4. Passage to the Effective Conductivity

Eliminations of Fourier ψA and tolerance amplitudes ap (if such eliminations are
possible) lead to the single equation for average temperature field u named as Ef-
fective Conductivity Equation. It is easy to verify that from (12) ψAcan be formally
eliminated and hence the Extended Tolerance Model can be written as:

⟨cu̇⟩ − ∇T (k⊥∇u+ ⟨k∇Tφp⟩ap) = −⟨b⟩
λ2(⟨φpcφq⟩ȧq −∇T

z ⟨φpcφq⟩∇zaq) + λ(⟨∇Tφpkφq⟩ − ⟨∇Tφqkφp⟩)∇zaq+
+⟨∇T

y φ
qk∇φp⟩ap + ⟨∇T

y φ
pk∇gA⟩ψ + [k]⊥∇u = λ⟨φpb⟩

(13)

with:

k⊥ = ⟨k⟩ − ⟨k∇gA⟩⟨∇T gAk∇gB⟩−1⟨∇T gBk⟩
[k]⊥ = ⟨k∇T

y φ
p⟩ − ⟨k∇T

y φ
p∇gA⟩⟨∇T gAk∇gB⟩−1⟨∇T gBk⟩ (14)

used as the projection of the Effective Conductivity Constant onto the z–variable di-
rection. The investigation of the reduction of Fourier amplitudes ap from (13) lead-
ing to the Effective Conductivity Constant projection onto the y–variable direction
is still an open problem and was carried out only in special cases of one-directional
periodicity.
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5. Governing equations in the periodic case

In periodic case equations (13) takes the form:

⟨cu̇⟩ − ∇T (k⊥∇u+ ⟨k∇T
y φ

p⟩ap) = −⟨b⟩
⟨∇T gAk∇gB⟩ψB + ⟨k∇T gA⟩∇zu = 0
λ2(⟨φpcφq⟩ȧq −∇T

z ⟨φpcφq⟩∇zaq) + λ(⟨∇T
y φ

pkφq⟩ − ⟨∇T
y φ

qkφp⟩)∇zaq+
+⟨∇T

y φ
pk∇φq⟩aq + ⟨k∇T

y φ
p⟩∇zu = λ⟨φpb⟩

(15)

in which coefficients are obtained from the related coefficients in (14) by replacement
of full gradients of ∇gA, ∇φq as well as of its transposed counterparts ∇Tφp, ∇Tφp

in the interior of the averaged coefficients in (14) are changed by ∇yg
A, ∇yφ

q,
∇T

y φ
p, ∇Tφp, respectively. It must be emphasized that coefficient ⟨∇T

y φ
pkφq⟩ −

⟨∇T
y φ

qkφp⟩ in the damping term in (13) creates skew-symmetric σ × σ matrix in

contrast to the corresponding coefficient ⟨∇T
y φ

pkφq⟩ − ⟨∇Tφqkφp⟩ in (15) creating
matrix that is generally not antysymmetric.

6. Two-phased one-directional periodicity

Impulses:

fp(y) =

{
λ
2 − αp[1 + cos 2πp( y

ηλ + 1)] dla − ηλ ≤ y ≤ 0
λ
2 − αp[1 + cos 2πp( ȳ

ηλ + 1)]|z̄=0 dla 0 ≤ y ≤ (1 − η)λ

fp+m(y) =

{
λ
2 − αp+m[1 + cos 2πp( ȳz

(1−η)λ − 1)]|z̄=0 dla − ηλ ≤ y ≤ 0
λ
2 − αp+m[1 + cos 2πp( y

(1−η)λ − 1)] dla 0 ≤ y ≤ (1 − η)λ

fp+2m(y) =

{
−λ

2 cos(2p− 1)π( y
ηλ + 1) dla − ηλ ≤ y ≤ 0

−λ
2 cos(2p− 1)π( y

(1−η)λ − 1) dla 0 ≤ y ≤ (1 − η)λ

(16)
where:

αp =
λ

2
ᾱ ≡ λ

2(1 + η)
, αp+m =

λ

2
α ≡ λ

2(2 − η)
(17)

subjected orthogonality procedure realized by:

λφp = fp + αfp+m,
λφp+m = fp − αfp+m,
λφp+2m = fp+2m.

(18)

for the independent on p and m parameter:

α = ± ⟨kfpfp⟩
⟨kfp+mfp+m⟩

(19)

and treated as Fourier basis mentioned in Assumption 1 for the case of two-phased
one-directionally periodic composite ensures fulfillment all Assumptions 1.2.3. That
is why equations can be treated as an equivalent reformulation of heat transfer
equation for periodic composites s.
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7. Final Remarks

The Extended Tolerance Model is an alternative representation of heat transfer
equation for periodic composites. The infinite number of equations in (13) is an
important inconvenience of both limit model and the extended tolerance model.
Although, there are many possibilities to avoid this inconvenience. It must be
emphasized that the means of basic unknowns ψA, ap before and after completing
the limit passage ε→ +∞ can be different. Particularly, terms gA(x)ψ(x, y) in (11)
vanish and hence representation of temperature field given by extended micro-macro
hypothesis changes to the form follow:

θ(y, z, t) = u(z, t) + λap(z, t)φp(y, z) (20)

cannot be conclude that temperature gradient ∇θ(x, y, t) is equal to ∇θ(x, y, t) =
∇u(z, t) + ∇[λap(z, t)φp(y, z)] since from (5) one can obtain:

∇yθ(y, z) = limε→0{∇yu(z) + ∇y[gAε (y, z)ψA(z) + φp
ε(y, z)ap(z)}

∇zθ(y, z) = limε→0{∇zu(z) + ∇z[gAε (y, z)ψA(z) + φp
ε(y, z)ap(z)}]}

d
dtθ(y, z) = limε→0{du

dt (z) + d
dt [g

A
ε (y, z)ψA(z) + φp

ε(y, z)ap(z)}
(21)

as a certain representations of the related derivatives of the temperature field. The
model equations obtained in this study are based on [3,9,11] and are an extension
of the equations received for the rigid composite periodicity. Papers [12,13] in-
clude applications of these equations. model. Papers [8,10] can be treated as such
applications in the special rigid composite periodicity case.

Equations obtained in the paper constitute the realization of a certain conviction
of Cz. Woźniak that the asymptotic version of tolerance model (obtained as a result
of the limit passage in which the size of the repetitive cell tends to zero and which
allows the determination of the the tensor of effective modules) should be obtained
as a result of the another limit passage in which the cell size remains unchanged.
Model equations in the paper have been obtained on this way. Mentioned new
parameter tending to zero is the width of the ribbon surrounding the discontinuity
surfaces including the support of the used tolerance shape functions.
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diffusion and heat transfer processes in a periodically micro-stratified solid layer,
Acta Mechanica, 157, 175-185, 2002.

[12] Kula, D., Wierzbicki, E., Witkowska-Dobrev, J. and Wodzyński,  L.: Fourier
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[13] Wodzyński,  L., Kula, D. and Wierzbicki, E.: Transport of even and odd temper-
ature fluctuations across the chess-board type periodic composite, this issue, 2018.


